オオヤマ ゲンコウ
OYAMA Genko
大山 彦光 所属 埼玉医科大学 医学部 脳神経内科 職種 教授 |
|
論文種別 | 学術雑誌(原著) |
言語種別 | 英語 |
査読の有無 | 査読あり |
表題 | Convolutional neural network-based segmentation can help in assessing the substantia nigra in neuromelanin MRI. |
掲載誌名 | 正式名:Neuroradiology |
掲載区分 | 国外 |
巻・号・頁 | 61(12),1387-1395頁 |
著者・共著者 | Alice Le Berre,Koji Kamagata,Yujiro Otsuka,Christina Andica,Taku Hatano,Laetitia Saccenti,Takashi Ogawa,Haruka Takeshige-Amano,Akihiko Wada,Michimasa Suzuki,Akifumi Hagiwara,Ryusuke Irie,Masaaki Hori,Genko Oyama,Yashushi Shimo,Atsushi Umemura,Nobutaka Hattori,Shigeki Aoki |
発行年月 | 2019/12 |
概要 | PURPOSE: This study aimed to evaluate the accuracy and diagnostic test performance of the U-net-based segmentation method in neuromelanin magnetic resonance imaging (NM-MRI) compared to the established manual segmentation method for Parkinson's disease (PD) diagnosis. METHODS: NM-MRI datasets from two different 3T-scanners were used: a "principal dataset" with 122 participants and an "external validation dataset" with 24 participants, including 62 and 12 PD patients, respectively. Two radiologists performed SNpc manual segmentation. Inter-reader precision was determined using Dice coefficients. The U-net was trained with manual segmentation as ground truth and Dice coefficients used to measure accuracy. Training and validation steps were performed on the principal dataset using a 4-fold cross-validation method. We tested the U-net on the external validation dataset. SNpc hyperintense areas were estimated from U-net and manual segmentation masks, replicating a previously validated thresholding method, and their diagnostic test performances for PD determined. RESULTS: For SNpc segmentation, U-net accuracy was comparable to inter-reader precision in the principal dataset (Dice coefficient: U-net, 0.83 ± 0.04; inter-reader, 0.83 ± 0.04), but lower in external validation dataset (Dice coefficient: U-net, 079 ± 0.04; inter-reader, 0.85 ± 0.03). Diagnostic test performances for PD were comparable between U-net and manual segmentation methods in both principal (area under the receiver operating characteristic curve: U-net, 0.950; manual, 0.948) and external (U-net, 0.944; manual, 0.931) datasets. CONCLUSION: U-net segmentation provided relatively high accuracy in the evaluation of the SNpc in NM-MRI and yielded diagnostic performance comparable to that of the established manual method. |
DOI | 10.1007/s00234-019-02279-w |
PMID | 31401723 |