オオヤマ ゲンコウ
OYAMA Genko
大山 彦光 所属 埼玉医科大学 医学部 脳神経内科 職種 教授 |
|
論文種別 | 学術雑誌(原著) |
言語種別 | 英語 |
査読の有無 | 査読なし |
表題 | White matter and nigral alterations in multiple system atrophy-parkinsonian type. |
掲載誌名 | 正式名:NPJ Parkinson's disease |
掲載区分 | 国外 |
巻・号・頁 | 7(1),96-96頁 |
著者・共著者 | Takashi Ogawa,Taku Hatano,Koji Kamagata,Christina Andica,Haruka Takeshige-Amano,Wataru Uchida,Daiki Kamiyama,Yasushi Shimo,Genko Oyama,Atsushi Umemura,Hirokazu Iwamuro,Masanobu Ito,Masaaki Hori,Shigeki Aoki,Nobutaka Hattori |
発行年月 | 2021/10/29 |
概要 | Multiple system atrophy (MSA) is classified into two main types: parkinsonian and cerebellar ataxia with oligodendrogliopathy. We examined microstructural alterations in the white matter and the substantia nigra pars compacta (SNc) of patients with MSA of parkinsonian type (MSA-P) using multishell diffusion magnetic resonance imaging (dMRI) and myelin sensitive imaging techniques. Age- and sex-matched patients with MSA-P (n = 21, n = 10 first and second cohorts, respectively), Parkinson's disease patients (n = 19, 17), and healthy controls (n = 20, 24) were enrolled. Magnetization transfer saturation imaging (MT-sat) and dMRI were obtained using 3-T MRI. Measurements obtained from diffusion tensor imaging (DTI), free-water elimination DTI, neurite orientation dispersion and density imaging (NODDI), and MT-sat were compared between groups. Tract-based spatial statistics analysis revealed differences in diffuse white matter alterations in the free-water fractional volume, myelin volume fraction, and intracellular volume fraction between the patients with MSA-P and healthy controls, whereas free-water and MT-sat differences were limited to the middle cerebellar peduncle in comparison with those with Parkinson's disease. Region-of-interest analysis of white matter and SNc revealed significant differences in the middle and inferior cerebellar peduncle, pontine crossing tract, corticospinal tract, and SNc between the MSA-P and healthy controls and/or Parkinson's disease patients. Our results shed light on alterations to brain microstructure in MSA. |
DOI | 10.1038/s41531-021-00236-0 |
PMID | 34716335 |