フルヤ シュンスケ   FURUYA Shunsuke
  古谷 峻介
   所属   埼玉医科大学  医学部 教養教育
   職種   専任講師
論文種別 学術雑誌(原著)
言語種別 英語
査読の有無 査読なし
表題 Ground-State Phase Diagram of an Anisotropic S=1/2 Ladder with Different Leg Interactions
掲載誌名 正式名:J. Phys. Soc. Jpn. 87, 104002 (2018)
ISSNコード:0031-9015
出版社 PHYSICAL SOC JAPAN
巻・号・頁 87(10)
著者・共著者 Takashi Tonegawa,Toshiya Hikihara,Kiyomi Okamoto,Shunsuke C. Furuya,Tôru Sakai
発行年月 2018/08/03
概要 We explore the ground-state phase diagram of the $S=1/2$ two-leg ladder with<br />
different leg interactions. The $xy$ and $z$ components of the leg interactions<br />
between nearest-neighbor spins in the $a$ ($b$) leg are respectively denoted by<br />
$J_{ { \rm l},a}$ and $\Delta_{\rm l} J_{ { \rm l},a}$ ($J_{ { \rm l},b}$ and<br />
$\Delta_{\rm l} J_{ { \rm l},b}$). On the other hand, the $xy$ and $z$ components<br />
of the uniform rung interactions are respectively denoted by $\Gamma_{\rm r}<br />
J_{ { \rm r } }$ and $J_{ { \rm r } }$. In the above, $\Delta_{\rm l}$ and $\Gamma_{\rm<br />
r}$ are the $XXZ$-type anisotropy parameters for the leg and rung interactions,<br />
respectively. This system has a frustration when $J_{ { \rm l},a} J_{ { \rm<br />
l},b}&lt;0$ irrespective of the sign of $J_{\rm r}$. The phase diagram on the<br />
$\Delta_{\rm l}$ ($|\Delta_{\rm l}| \leq 1.0$) versus $J_{ { \rm l},b}$<br />
($-2.0\leq J_{ { \rm l},b}\leq 3.0$) plane in the case where $J_{ { \rm l},a}=0.2$,<br />
$J_{ { \rm r } }=-1.0$, and $\Gamma_{\rm r} = 0.5$ is determined numerically. We<br />
employ the physical consideration, and the level spectroscopy and<br />
phenomenological renormalization-group analyses of the numerical date obtained<br />
by the exact diagonalization method. The resultant phase diagram contains the<br />
ferromagnetic, Haldane, N{\&#039;e}el, nematic Tomonaga-Luttinger liquid (TLL),<br />
partial ferrimagnetic, and $XY1$ phases. Interestingly enough, the nematic TLL<br />
phase appears in the strong-rung unfrustrated region as well as in the<br />
strong-rung frustrated one. We perform the first-order perturbational<br />
calculations from the strong rung coupling limit to elucidate the<br />
characteristic features of the phase diagram. Furthermore, we make the<br />
density-matrix renormalization-group calculations for some physical quantities<br />
such as the energy gaps, the local magnetization, and the spin correlation<br />
functions to supplement the reliability of the phase diagram.
DOI 10.7566/JPSJ.87.104002
arXiv ID arXiv:1808.01090
PermalinkURL http://arxiv.org/abs/1808.01090v2